pg电子,pg电子娱乐官方网站

Xudong Qu

Professor

  • Tel: +86-021
  • Email: quxd19@sjtu.edu.cn
  • Address: Rm. 2-403, School of Life Sciences and Biotechnology, Minghang District

Education and Research Experience

  • 2019-present, Professor, Shanghai Jiao Tong University, School of Life Sciences and Biotechnology, China.
  • 2012-2019 Professor, Wuhan University, School of Pharmaceutical Sciences, China.
  • 2011-2011 Associate Investigator, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences.
  • 2008-2010 Assistant Investigator, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences.
  • 2007-2008 Post-doctoral Associate, Massachusetts Institute of Technology, Department of Chemistry, USA.
  • 2002-2007 PhD, Organic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, China.
  • 1998-2002 BS, Chemistry, East China Normal University, China.

Research Interests

Biosynthesis of inert molecular scaffolds

   Pharmaceuticals are indispensable for human survival, but there has been a long-term inssued bottleneck at both ends of drug development and production, that is, the efficient synthesis and engineering of the carbon scaffold. Structural modification is pivotal for development of natural products-derived drugs (NPD drugs). It is known that about 90% of NPD drugs have been structurally optimized. However, due to the limitation of chemical reactivity, chemical modification is usually only applicable to active functional groups (such as hydroxyl, amino, etc.), and rarely to the scaffold part composed of saturated carbon atoms (inert scaffold). Therefore, the inert carbon scaffold, which accounts for around half of the molecular scaffold, has always been a forbidden area for the development of new drugs. Hence, developing efficient and universal modification approaches to engineer them in natural products is of great significance to the development of NPD drugs.  In drug production, chiral chemical catalysts are usually very expensive and difficult to be used in large-scale production, so current pharmaceutical industry still mainly relies on chiral resolution to obtain chiral drugs. This process is uneconomical, unsustainable and easy to form wastes, therefore development of efficient biosynthetic approaches to stereo-specifically making chiral carbon scaffolds is of great significance for industrial production of pharmaceuticals. The research direction of our group is 'biosynthesis of inert molecular scaffolds'. We focus on three important  scaffold types, including polyketides, steroids and azacycles which constitute nearly 100,000 natural products and more than 1500 clinical drugs. Our aim is to i) understand the formation of these molecular scaffolds in natural products, and ii) to develop efficient and universal biosynthetic approaches to engineer or synthesis of these  scaffolds. With our efforts, we wish to solve this long-standing bottleneck in the drug development and production.

Selected Publications

  • ?  

    Lu Yang, Jinmei Zhu, Chenghai Sun, Zixin Deng, Xudong Qu*. Biosynthesis of plant tetrahydroisoquinolines alkaloids through an imine reductase route.

    Chemical Science 2020, 11, 364-371 (2019 Chemical Science HOT Article Collection).

    ?  

    Hongqun Tan, Xuejun Yang, Qi Dai, Zixin Deng, and Xudong Qu*. Unravelling the biosynthetic flexibility of UK-2A enables enzymatic synthesis of its structural variants.

    ACS Synthetic Biology 2019, 8, 2659-2665.

    ?  
    Junlin Wang, Yanan Zhang (co-first author), Linjun Zhou, Linpeng Wei, Wenbing Yin, Zixin Deng, Xudong Qu*, Qianghui Zhou*.  
    A biocatalytic hydroxylation-enabled unified approach to C19-hydroxylated steroids. 
    Nature Communications 2019, 10, 3378.
    ?  

    Wenya Tian, Chenghai Sun (co-first author), Mei Zheng, Mingjia Yu, Yanan Zhang, Haidong Peng, Dongqing Zhu, Jeffery Harmer, Zixin Deng, Shilu Chen, Mohedi Mobli, Xinying Jia*, Xudong Qu*.

    Efficient biosynthesis of heterodimeric C3-aryl pyrroloindoline alkaloids.

    Nature Communications 2018, 9, 4428.

    ?  

    Yuan Li, Wan Zhang (co-first author), Hui Zhang, Wenya Tian, Lian Wu, Shuwen Wang, Jun Zhang, Chenghai Sun, Yuhui Sun, Zixin Deng, Xudong Qu*, Jiahai Zhou*.

    Structural basis of a broadly selective acyltransferase from the polyketide synthase of splenocin.

    Angewandte Chemie International Edition 2018, 57, 5823-5827.

  • ?  

    Xianyi Mei, Xiaoli Yan (co-first author), Hui Zhang, Mingjia Yu, Guangqing Shen, Linjun Zhou, Zixin Deng, Chun Lei, Xudong Qu*.

    Expanding the bioactive chemical space of anthrabenzoxocinones through engineering the highly promiscuous biosynthetic modification steps.

    ACS Chemical Biology 2018, 13, 200-206.

    ?  

    Jinmei Zhu, Hongqun Tan, Lu Yang, Zheng Dai, Lu Zhu, Hongmin Ma, Zixin Deng, Zhenghua Tian, Xudong Qu*.

    Enantioselective synthesis of 1-aryl-substituted tetrahydroisoquinolines employing imine reductase.

    ACS Catalysis 2017, 7, 7003-7007.

    ?  

    Benying Zhang, Wenya Tian (co-first author), Shuwen Wang, Xiaoli Yan, Xinying Jia, Gregory K. Pierens, Wenqing Chen, Hongmin Ma, Zixin Deng, Xudong Qu*.

    Activation of natural products biosynthetic pathways via a protein modification level regulation.

    ACS Chemical Biology 2017, 12, 1732−1736. (Cover picture).

    ?  

    Haidong Peng, Erman Wei, Jiali Wang, Yanan Zhang, Lin Cheng, Hongmin Ma, Zixin Deng, Xudong Qu*.

    Deciphering piperidine formation in polyketide-derived indolizidines reveals a thioester reduction, transamination, and unusual imine reduction process.

    ACS Chemical Biology 2016, 11, 3278-3283.

    ?  

    Chengcheng Chang, Rong Huang (co-first author), Yan Yan, Hongmin Ma, Zheng Dai, Benying Zhang, Wen Liu, Zixin Deng, Xudong Qu*.

    Uncovering the formation and selection of benzylmalonyl-CoA from the biosynthesis of splenocin and enterocin reveals a versatile way to introduce amino acids into Polyketide carbon scaffolds.

    Journal of the American Chemical Society 2015, 137, 4183-4190.

Academic Rewards

  • 2014 National Science Foundation for Excellent Young Scholars
  • 2013 New Century Excellent Talents in University, Chinese Ministry of Education
  • 2012 Luojia Distinguished Professor of Wuhan University

Teaching Experiences

  • 2012-2019,Undergraduate Course, Chemical Biology (Wuhan University)
  • 2012-2019,Graduate Course, Proceedings of Biological Pharmacetucial Sciences (Wuhan University)
  • National Natural Science Foundation of China-31970054, 2020-2023, PI
  • National Key R&D Project-2018YFC1706200, 2018-2021, Co-PI
  • National Key R&D Project-2018YFA090038, 2019-2024, Co-PI
  • National Natural Science Foundation of China-31770063, 2018-2021, PI
  • National Natural Science Foundation of China-31570057, 2016-2019, PI
  • National Science Foundation for Excellent Young Scholars-31322002, 2014-2016, PI
  • National Natural Science Foundation of China-31270119, 2013-2016, PI
  • New Century Excellent Talents in University, Chinese Ministry of Education-NCET-12-0423, 2013-2015, PI
  • National Natural Science Foundation of China-30900021, 2010-2012, PI

Selected Grants